1992 : Ph.D., Enzymology, University of Aix-Marseille 2France
1992 : Thierry Michon was awarded the PhD in enzymology at the University of Aix-Marseille 2 France. In 1993, he accepted a position of researcher at the "Institut de la Recherche Agronomique" in Nantes where he worked on peroxidases catalysis in heterogeneous media. Between 1998 and 2001 he was appointed by the California Institute of Technology as an invited scientist and worked in close collaboration with Pr. D. Tirrell (Chemical Engineering Dep’t). During this period he contributed to the development of protein based bio inspired materials. Since 2001 T. Michon has been project leader at the French Institute of Agronomic research (INRA) in Bordeaux France. He studies possible correlations between virus evolution and the intrinsic disorder found in viral proteins. In parallel his team develops virus based Enzymes NanCarriers (ENCs) for nanotechnology applications.
Molecular evolution of virus proteins; virus-inspired nanotechnology
Molecular evolution of intrinsic disorder in viral proteins.
Fischer’s lock-and-key model, 100 years ago, opened up the concept of structure-function relationship whereby the folding of a polypeptide chain into an ordered 3D structure conditions the specificity of its function.
However, many biologically functional proteins possess Intrinsically Disordered Regions (IDRs). IDRs are regions devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. This lack of a stable 3D structure in many cases is relieved only when the protein binds to its target molecule. The ability to exert specific biological functions and to interact with various partners in spite of the lack of a precise 3D scaffold, challenges the classic paradigm according to which specificity in interacting domains can only be achieved through precise surface complementation between structured and conserved domains. The genome of RNA viruses codes for proteins containing an important proportion of IDRs. Within viral proteins, IDRs often contain binding domains for protein-protein interactions that are crucial to the virus replication cycle. Because of the low steric constraints within IDDs, IDDs are expected to be more tolerant to mutations than structured proteins and thus have the potential to evolve faster. Our objective aims at assessing experimentally if ID in viral proteins favors an exploration of a broader sequence space without serious functional consequences, which could afford a faster adaptation to various hosts. It will in turn be examined whether there is a selective pressure for the conservation of intrinsic disorder (ID) in domains of viral proteins interacting with host factors. Potato virus Y (PVY), a phytovirus within the genus Potyvirus, provides an excellent model system. Indeed, it has been demonstrated that pepper infection by PVY requires the interaction between eIF4E, a factor involved in the host translational machinery, and an IDR within the Virus Protein linked to the genome (VPg). In addition, this IDR contains several amino acid positions that are subject to positive selection, i.e. presumably involved in virus adaptation. We also experimentally explore whether a correlation exists between ID and mutational robustness (relaxed constraint) or adaptive evolution (positive selection) from one hand (Figure 1) and between the structural flexibility in the VPgs IDRs and a faster adaptability to the host on the other hand. Our analysis combine, in silico, in vitro and in vivo studies using complementary skills through bioinformatics, biological, biochemical and biophysical approaches [1-8]. We performed an in silico analysis of the content in ID of the Potyvirus proteome both at inter- and intra-species scales. This work unveiled a high content in ID, which is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs [9]. In collaboration with the Benoit Moury team (INRA, Avignon), we obtained the first in vivo experimental data supporting the hypothesis that ID could directly modulate virus adaptability to the host, possibly by enabling a faster exploration of the mutational space thereby allowing the virus to bypass the plant resistance. These original data, which strongly suggest that IDRs contribute to adaptive mechanisms of plant viruses, were published in a landmark paper [10]. These results offer an appropriate starting point to explore more systematically correlations between adaptation and ID. We recently published a kinetic analysis allowing to specify the contribution of the VPg central helix and its appended disordered region to VPg association with eIF4E [11].
A controlled positioning of enzymes on virus nano-scaffolds.
A
B - C
D
Functional imaging of single biomolecules at work (and especially enzymes) has become the Grail of scientists and technologists. It will not only help to understand in real time molecular mechanisms, for instance enzyme cascades, at the molecular level but will also have high impact for the design of nano-transducers and lab-on-a-chip applications. However, there are very few methods available to systematically evaluate how spatial factors (e.g., position, orientation) influence enzymatic activity. This limitation notably comes from the fact that their small size makes it extremely difficult to organize biomolecules onto surfaces in order to form fully active supramolecular complexes amenable to experimental studies. We have developped a strategy to spatially organize enzymes on a solid substrate making use of robust Virus NanoCarriers (VNC’s) as positioning helpers (Figure 2A). Viruses are attractive building blocks for a large panel of biotechnology applications such as enzyme chips, protein selection, molecular therapy, or to study more fundamental problems raised by modern enzymology Viruses are here highly interesting as natural nano-carriers since their ordered protein backbones afford a high degree of positional control of functional molecules which can be attached selectively to their surface. These VNCs are then used as intermediate building blocks or scaffolds carrying correctly exposed proteins on their surface, and subsequently immobilized onto a solid substrate. Filamentous viruses such as the potyvirus PVA (700 nm long, 14 nm diameter), or M13 Bacteriophage (800 nm, 8 nm diameter), a virus that has shown its potential for biotechnological applications are our work-horse systems. Knowing the structure of these viruses, genetic engineering can be used to optimize the desired enzyme's topology on the virus nanocarrier [12-13]. In the frame of a strong collaboration between the laboratory of molecular electro-chemistry (CNRS-Univ. Paris ) and our team, high resolution imaging of virus particles were obtained by AFM-SECM (figure 2B). We used this technology to bridge the gap between our two main research themes. We imaged eIF4E, a plant translation factor interacting specifically to the viral protein VPg exposed at the surface of a potyvirus nanoparticle, figure 2C [17]. Our experimental setup allows a precise kinetic analysis of a small population of enzymes (100-200 individuals) adsorbed on single viral particles [18]. We recently imaged catalytic electron fluxes at the surface of functionalized virus particles, figure 2D [19].
By browsing our site you accept the installation and use cookies on your computer.
Know more
About cookies
What is a "cookie"?
A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.
Different types of cookies are placed on the sites:
Cookies strictly necessary for the proper functioning of the site
Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics
Cookies strictly necessary for the site to function
These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.
Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.
Technical cookies
Name of the cookie
Purpose
Shelf life
CAS and PHP session cookies
Login credentials, session security
Session
Tarteaucitron
Saving your cookie consent choices
12 months
Audience measurement cookies (AT Internet)
Name of the cookie
Purpose
Shelf life
atid
Trace the visitor's route in order to establish visit statistics.
13 months
atuserid
Store the anonymous ID of the visitor who starts the first time he visits the site
13 months
atidvisitor
Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.
13 months
About the AT Internet audience measurement tool :
AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.
The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.
Good to know:
The data collected are not cross-checked with other processing operations
The deposited cookie is only used to produce anonymous statistics
The cookie does not allow the user's navigation on other sites to be tracked.
Third party cookies to improve the interactivity of the site
This site relies on certain services provided by third parties which allow :
to offer interactive content;
improve usability and facilitate the sharing of content on social networks;
view videos and animated presentations directly on our website;
protect form entries from robots;
monitor the performance of the site.
These third parties will collect and use your browsing data for their own purposes.
How to accept or reject cookies
When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.
You can change your choices at any time by clicking on the "Cookie Management" link.